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We derive an algorithm to numerically integrate differential equations derivable from a 
separable Hamiltonian function. This symplectic algorithm is accurate to fourth order in the 
time step and preserves exactly the Poincart-Cartan integral invariants associated with the 
topology of the phase flow. We compare the effkiency and accuracy of this method to that 
of existing integrators (both symplectic and non-symplectic) by integrating the equations of 
motion corresponding to a nonlinear pendulum, a particle in the field of a standing wave, and 
a harmonic oscillator perturbed by a plane wave. (0 1991 Academic Press. Inc. 

1. INTRODUCTION 

The study of Hamiltonian dynamical systems leads quite often to differential 
equations which are not solvable analytically. Increasingly, numerical integration 
is being used to gain insight into the complicated behavior of such systems. 
Unfortunately, popular integration schemes-including the Runge-Kutta class of 
algorithms--do not take into account the Hamiltonian nature of the equations and, 
consequently, do not preserve the hierarchy of global invariants known to exist in 
these systems. 

Consider, for example, a Hamiltonian system with N degrees of freedom and an 
N-dimensional configuration manifold 71“. Let q be the local coordinates on -I/. It 
can be shown that the cotangent bundle of “Ir, written T*3’, has the structure of 
a ZN-dimensional differentiable manifold with local coordinates (q, p), where p is 
the usual canonical momentum vector (see [l] for details). On the cotangent 
bundle T*V there exists the natural symplectic structure 

co2 = dp A dq, 

which is a closed, non-degenerate, differential two-form. We call the pair 
(T*Y, 02) a symplectic manifold. The forms Ed’, (w’)‘. . . . . (o)‘)~ are preserved 
under both the phase flow of the system and under canonical transformations. 
Collectively, these forms are referred to as the Poincare integral invariants. In fact, 

230 
0021-9991191 $3.00 
Copyright ~CI 1991 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



SYMPLECTIC INTEGRATION 54' ,di 

when integrated over an arbitrary region of dimension 2k (16 k < IV), the 2k-form 
&li will produce the invariant quantity 

which is proportional to the sum of the oriented volumes of projections onto the 
coordinate spaces (pi,, . . . . pi,, qi,, . . . . qjk), where 1 di,,, <N. When k=N. we recorder 
kiouville’s theorem. 

A brief summary of existing symplectic integration algorithms (STAs) is provided 
by Channel1 and Scovel [Z]. In addition to the methods discussed there. Itoh and 
Abe [3] have recently developed a method of integration based on discrete 
mechanics which exactly preserves the Hamiltonian. Their algorithms, however, are 
accurate only up to second order in the time step and, like the schemes proposed 
by Channel1 and Scovel, require the solution of implicit equations. Rut 
however, has devised an explicit method of symplectic integration which 1s 
structurally quite similar to the classical Runge-Kutta algorithms (RKIs). In wtar 
follows, we generalize his approach and extend the accuracy of the method to 
fourth order in the time step. The resulting explicit SIA is superior in both corn 

tional efficiency and global stability to the most popular fourth-order 
[5, 61. 

This paper is divided into six sections. Section 2 explains the fundamental idea 
upon which our SIAs are based. Section 3 contains the actual derivation of explicit 
SIAs accurate to second, third, and fourth order in the time step. The generalization 
of the results to time-dependent potentials is accomplished in Section 4. Section 5 is 
devoted to the study of numerical examples and Section 6 contains a summary and 
discussion of results. 

2. APPROXIMATE CANONICAL TRANSFORMATIOFG 

Let us begin by considering a Hamiltonian H: .9?‘v x %‘.‘--i 9 which is separabie 
with respect to the local coordinates q and momenta 

H(q, PI = T(P) + J’(q). tl: 

where q= {qa;5,, p= (pm>, a= 1, . . . . N. It is our goal to produce a series of differense 
equations which preserve the symplectic two-form ejIz = n dq and approximate 
the exact phase flow generated by H: 

(qO, PO) at time to--f (q? p) at time t. :2,k 

The accuracy of the approximation resulting from replacing Hamilton’s equations 
by such a series of difference equations will be measured in terms of the time step 
6t = ; - tO. More specifically, if a difference approximation agrees with Hamilton’s 
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equations up to O(bt”), then we will call that approximation an nth order SIA. In 
what follows, let us consider (qO, pO) to be initial conditions, and (q, p) to be the 
local coordinates and momenta after a time bt. Now, finding an nth order SIA is 
equivalent to finding a canonical transformation 92 which generates the map 

q: (9, PI + (%I, i&J = (%I, PO) + O(dt”+ ‘1, (3) 

where the tildes indicate approximate initial conditions. In particular, if we can find 
a series of transformations which leave the Hamiltonian with the final form 

Jwio, iM = f w%J, ikl) ai (4) 
i=n 

such that ij0 + q0 and fiO -+ p0 as 6t + 0, then one can prove that the equality in (3) 
is satisfied. Indeed, if we expand (i&, IT+,) and /~,(a,, fi,,) about t = t, in the following 
way, 

(ii,, I7,) = (90, PO) + -f (q”‘, P”‘) &’ 
j=l 

ki(40, h) =Mq,, PO) + 0(6t) 

then Hamilton’s equations imply 

= G(q,, po) bt”+ O(&“+ ‘), 

where G is some vector function of the initial conditions. Upon integration of the 
above results, we obtain the relationship between the exact and approximate initial 
conditions, 

(ia,Bll)=(qil,Po)+~~t~+l+0(6t”+‘) (5) 

= (qcl, PO) + o(dtn+l). (6) 

One may conclude, then, that if a canonical transformation % (or a series of such 
transformations) transforms the Hamiltonian (1) into the form of (4), then the 
resulting algebraic equations of transformation constitute an n th-order SIA. 

3. DEVELOPMENT OF EXPLICIT ALGORITHMS 

We are now faced with the question: How does one transform a Hamiltonian (1) 
into the form (4)? Fortunately, this question has been answered by Ruth [4], who 
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has obtained explicit algorithms accurate to third order. This is in contrast to the 
recently developed implicit methods of Channel1 and Scovel [2] and of Itoh and 
Abe [3], which are somewhat less convenient for practical use in most cases. 

3.1. The Generating Functions 

To obtain an integration algorithm accurate to order yi, we make the foIlo~i~g 
series of ! canonical transformations, 

When rz Q 4, one can always set I= n. However, it may be necessary to use i > >a 
transformations when n > 4. This necessity is a result of the rapid accumulation 
with increasing n of independent conditions which must be satisfied to put H into 
the form (4). The reader familiar with classical Runge-Kutta formulae wiil recall a 
similar rise in the number of coefficients required to derive an algorithm of order 
greater than four. In any case, the above variables have the interpretation 

(q,, pO) + initial conditions at time t = 0 

(ql, pi) -+ intermediate point 

(qt- I) pI- J -+ intermediate point 

(qI, pr) + integrated variables at time t = t, + bt 

and 

Ki(qiPl,pi, t)=-qi-,.pi-[aiT(pi)S-h;V( (8) 

are type 3 generating functions for i = 1, .‘., 1. This choice of Kj yields the equati.ons. 
of transformation 

and 

qi= -V,,K,=q,_,+6ta,V,~T(p,! 

Pi- 1= -&-, Ki=pi+6tbjVg,_iV(qi-1i 

(9) 

ilOj 

Ni-,(q,-I,Pi-1)=Hj+a,Ki=Hj-Ca,T~pi)+bj~(qj~,)3, (11) 

again, for i = 1: . . . . 1. The gradient operators we use here are defined accordmg t5 
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Upon applying all 1 transformations, it is clear that the Hamiltonian for the initial 
conditions, H,, will have the form 

ffo(qo7 PO) = Jf,(q,, PI) + i 8Ji 
i=l 

= UPI) + v(ql)- i CaiT(Pi) + bj v(qj- I)]2 (12) 
i=l 

where in the above we must consider qi=qi(qo, p,,) and pi= pi(q,, p,,). At the 
moment, however, the relationships between variables are implicit, the exact form 
of which follows at once from the equations of transformation (9) and (lo), 

I 

%=Qo+dt 1 %P(P,) 
m=l 

Pi=Po+at i bmF(qm-I), 
m = 1 

(13) 

(14) 

true for i= 1 , . . . . 1. Note that we have introduced the generalized force F(q) = 
-V, V(q), as well as the gradient of kinetic energy P(p) = V,T(p). Now, if one can 
determine the coefficients (a,, bi) such that the Hamiltonian has the form 
H,= O(St”), then (9) and (10) describe an Z-step process for the integration 
(so, po) + (q,, pl) which is exactly symplectic (since it is always a canonical trans- 
formation). In practice, to determine the coefficients {a,, bi}, one must expand qi 
and pi, and all associated functions of in powers of dt so that H, may take the form 

n-1 
ffo(qo, PO) = c h,( (4, h}Y 90, PO) bt” + 0(6f), 

,?I = 0 
(15) 

in which case {a,, bi} are found, not necessarily uniquely, by setting h, = 0 for 
m=o, . . ..n-1. 

3.2. Series Expansions for n < 4 

Let us now perform the required algebra to find a fourth-order algorithm. Since 
methods of order 1,2, and 3 are simpler cases of the order 4 method, we shall not 
yet specify the number I = n < 4 of transformations. First, we expand qi and pi in 
powers of 6t, 

qj = qo + cm, + iG2Ai + cst3vi + cyst") 

pi = po + 6t0, + 6t2mi + 6t3rri + O@t4) 

with the coefficients given by 

ri=p i: a, 
??I=1 

(16) 

(17) 

Aj=(F.V,)P i a, f b, 
n* = 1 r=l 
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Oi=F 1 b, 
l?l=l 

Bi=(P.V,)F i bmMflar 
lnz = 2 i-=1 

IT,=w~vq)2 
m-1 

I -Fib, Car 
[ I 

2 

2 m=2 r=! 

+[((FV,)P)V,]F i bi,“‘fl r i is,. 
In=2 r=l s=l 

The coefficients above are evaluated, after application of the gradient operators: at 
q = qO and p = p,,. That is, they are explicit functions of the initial conditions onion. 
Further, they are valid for i= 1, . . . . n. In a similar manner, we can expand I’( 

v(i(si) = v(qo) + Gt[Ti ‘V,] V(q) f 6t2 hi ‘V, + 
F 

2 

+6t3 ~i.vq+(“~J3+(,.vq)(Ai.vqj] V(q)+cq&“) 
L 

and 

T(p,)= T(po)+6t[Oj.Vp] T(p)+6t2 a+.v,+ 
[ 

2 

+&3 n,.vp+(@~~P)3 
! 

+ (Oi q(a+ T,) 1 T(p) + O(dt4). 
- 

Again, after the derivatives are taken, these expressions are evaluated at the initial 
conditions (qo, po). Upon substitution of the above expressions into (12), we arrive 
at a Hamiltonian with the form (15) 

H,(q,, po) = ho + h, 6t + h, 62 + h, 6t3 + O(dt”j, 

where the zero-order term is 
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To avoid possible confusion, we will abbreviate F, = F(q,) and P, = P(po). This 
allows us to write 

2 b,,- f a, i b,- f a,+ f bi ‘i’ a, 
??I=1 i=l m = I m = I j-2 m=l 1 

and 

hS=(Po~V,)(F~P,) i bmm&,- i ai i bnzn$, 
nz = 2 i-=1 ;=2 m = 2 r=l 

bi’tl a, f b, 
m=l r=l 

It can be shown, finally, that h, has the following lengthy expansion, 

h,=(P~.V~)‘(F.P,)[~~2b~~(~~~u,) 

+(P,4’,)(Fo4’,)(P~F) f bmmfla, i b,- i 
[ 

a, f b,‘il a, 
m=2 r-1 s=l m=2 i-=2 s=l 

- j12 ai jI, bm Tzll ar s$, bx + lj13 bi zl am Tc: br 1;: as 

+ i b, i bm”‘flar- i a, i b, i b,mflar 
nr = 1 El=2 r=l i=2 m=l n, = 2 r= 1 

-m$l a,,, i 0, f b,+ f bi ‘il anI 2 br]. 
??I=1 r=l i=2 m=l r=l 

As before, each of the expressions h,, . . . . h, is to be evaluated at the initial 
conditions (qo, p,,). Using the results we have derived so far, it is possible to derive 
algorithms of orders 1,2, 3, and 4 by making the choices shown in Table I. The 
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TABLE I 

Summary of Different Choices of Algorithms 

Order Equate to zero n Equations Variabies 

coefficients which result from these choices are listed in Table II. Once the 
coefficients {a,, bi) are known, we have the prescription shown in Table III for an 
n m-order integrator. Of course, algorithms of order 9 3 have been derived by 
[4]? but we will include a general treatment of them for completeness. The case 
r? = 1 is trivial, but for II = 2, one obtains the so-called 1eupfiog method which we 
will derive in the next section. 

3.3. A Secolzd-Order SIA 
According to Table I, if we set k, and h, equal to zero and choose n = 2, 3 

equations in four variables result: 
a,+az=l (21) 

b,+b,= 1 (22; 

a,b,+a,=b2a,. CJj) 

Two particularly interesting solutions are the leapfrog method 

and the pseudo-leapfrog method 

TABLE II 

Summary of Coeflicients for Various Algorithms 

Order (?I) Coefficients 

(a,.b,)=(L 1) 
b,.a,,b,, b?)=(+. $. 0, 1) 

(a,, al, a,,b,, bZ, b3)=j;, -5, 1, $, i, -&) 
a,=a,=~(Z+2’,3+2--1:3) 
a,=a,=~(1-2’,‘-2-l’I‘) 

b,=O 
bz=b4=(2-2i’3)-’ 

b,=(1-2=-’ 
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TABLE III 

General Scheme for a bf Time-Step Integration 

Hamiltonian: H(q, p) = T(p) + V(q) 
Initial conditions: (qO, p,,) at f = fO 

Dofori=Iton: 
pi = pi- I+ b,F(q,- ,) 6r, qj = qi-, + a,P(p,) 6r 

Integrated variables: (q,‘, p,) at t = to + 6f 

These coefficients are implemented into a numerical integration scheme according 
to Table III. 

3.4. A Third-Order SIA 

In this case n = 3 and h,, h,, h, must be set equal to zero. One is then left with 
live equations in six variables: 

a, + a2 + a3 = 1 

b,+b,+b,=l 

bza, + b,(a, + az) = + 

a,b: + a,(b, + bJ2 + a3 = 4 

b,a: + b,(a, + a2)2 = f. 

(24) 

(25) 

(26) 

(27) 

(28) 

A solution found originally by Ruth [4] is 

(aI, a2, a3, h, b2, b3) = (f, -2, 1, &, i, -$. 

Again, these coefficients are implemented according to the procedure in Table III. 

3.5. A Fourth-Order SIA 

One of the most popular methods used for numerical integration of differential 
equations is the fourth-order RKI shown in Appendix 1. However, this RKI is not 
symplectic, and requires four evaluations of the force F per time step. The SIA that 
we will now present requires only three evaluations of the force per time step, and, 
because of its canonical nature, preserves more accurately global phase space 
structures. Setting ho, h,, h,, and h, equal to zero yields eight equations in eight 
variables: 

a, + a, + a3 + a4 = 1 

b, + b, + b, + b, = 1 

b2a,+b3(al+a2)+b,(l-a,)=; 

(29) 

(30) 

(31) 
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a,b:+a*(b,+b,)*+u,(l-b4j2+u~=~ 4Tj,ji / “I 

b,uf+b,(a,+u,)*+b,(l-a,j’=~ i33) 

a,6:+a2(b,+b2)3+n3el-b,)3iL:4=~ t.34) 

b2a: + b,(a, + a*)3 + b4( I - ~7~)~ = : (35) 

bza,+b,(u,+u,)Cu,b,+uz(b,+b?)l+bqi51--al)Ct--Ci41 

=uz(b,+bz)Cb,u,~+a,(l-b,)[~-b,iI-u,~l+~a,. i36r 

It can be shown that the following is an analytic solution of the equations 

u,=a,=~(2+21:‘~2~‘.3) 

u2=u3=a(l-2!,‘3-2-13) 

b,=O 

A similar solution exists for which only three evaluations of P are necessary. 

4. TIME-DEPENDENT POTENTIALS 

The case where the potential V is an explicit function of time is easily accounted 
for. Let us begin by assuming we have a Hamiltonian H: 2%‘~ @‘x 99 -+ 2, 

If we define the type 1 generating function 9 = pql, then time can be eliminated by 
introducing the canonically conjugate pair (cp, p,), The equations of transformation 
are 

cp=!?cr 
dP,, 

H “eW =H+az.F=H+p, 

(38) 

(39) 

Note that rp is numerically equal to t and that pv = -H(q, p, 1’) + constant. Upon 
substitution, we find 
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which is equivalent to (1 ), but extended to N+ 1 degrees of freedom. Table IV 
shows the prescription for integrating the equations of motion corresponding to the 
Hamiltonian (37), with the generalized force defined by F(q, t) = -V, V(q, t). 

5. NUMERICAL EXAMPLES 

All numerical calculations quoted in this paper were done using a version of 
VAX FORTRAN which was compiled and run on a DEC MicroVAX II computer. 
The double-precision (REAL*8) format was used for all floating point numbers 
since the accuracy of single-precision (REAL*4) variables is insufflcient for long- 
time numerical integration. 

5.1. The Nonlinear Pendulum 

Our first example is the nonlinear pendulum, which is described by the following 
Hamiltonian 

H(q, p) = $ - cos q. 

The solutions for q(t) and p(t) are well known and can be expressed in terms of 
Jacobian elliptic functions [7]. If we impose the initial conditions q(0) =0 and 
p(O) = po, then 

where k2 = 4/p:. Using these analytical results, we were able to monitor exactly the 
errors in p and q, as well as the error in energy. The RKIs which we shall use for 
comparitive purposes are listed in Appendix 1. For the sake of brevity, the second- 

TABLE IV 

General Scheme for a 6f Time-Step Integration 

Hamiltonian: H(q, p. I) = T(p) + V(q, t) 
Initial conditions: (no. po) at t = t, 

Dofori=l ton: 
pi = pi-, + bjF(q;- 1, rim,) at, qi = qi-, + @(p;) & 

ri=ri-,+a,& 

Integrated variables: (q,, p,) at r = r, + 61 
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order Runge-Kutta method shall be called RKI2, and the fourth-order method 
RK14. Similarly, the leapfrog method of Section 3.3 will hereby be referred to as 
SIA2, and the method of Section 3.5 will be called SIA4. Figures 1 and 2 compare 
the accuracy of SIA2 and RK12, while Figs. 3 and 4 compare the accuracy of SIA4 
and RK14. In both cases, we see that the energy error for the SIpLs is very small and 
tends to oscillate about some small central value, while the energy error for the 
RKIs increases monotonically. This characteristic has been noted by previous 
authors, most notably in [2]. 

The SIAs also reproduce the coordinate q more accurately than the Is. 
IIowever, the symplectic methods show a higher rate of growth of coordinate error 
than of energy error. This phenomena is appropriately described as the propagation 
of a phase error [3] in the SIA. 

5.2. Particle tw a Standing Waue Field 

The equation of motion 

mlj = -eE[sin(kq - at) + sin(kq f wt)] “42) 

describes the motion of a particle of mass m, charge -e, in the field of a standing 
wave. Choosing units such that CO = k = m = 1, we find that the above reduces to 

q+Esinqcost=O, 

o.cooo 

FIG. 1. Comparison of the relative error in energy when using SI.42 and RKI2 to integrate (al), 
with initial conditions (qo, pu, f,,) = (0, 1.4,0): and time step 6t = 0.01. 
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0 500 1000 1500 2000 2500 

Time t 

FIG. 2. Comparison of the absolute error in position when using SIA2 and RK12 to integrate (41), 
with initial conditions (qo, pO, rO) = (0, 1.4, 0), and time step 6t = 0.01. 

0 2500 5000 7500 10000 12500 

Time t 

FIG. 3. Comparison of the relative error in energy when using SIA2 and RK12 to integrate (41), 
with initial conditions (qo. pO, I~) = (0, 1.4,0), and time step 6t = 0.05. 
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L LLIL I I -ALL--J-L-L_-_U L! 
0 ‘500 5000 ‘7:iOO 10000 i25CO 

Tinle t 

FIG. 4. comparison of the absolute error in position when using SIA2 and RKI2 to integrate ($I), 
with initial conditions (q,,, pO> to) = (0, 1.4, 0), and time step 6r = 0.05. 

where F = &E/m. This equation is derivable from the time-dependent Hamiltoniaa 
function 

A crude estimate of the stochasticity threshold can be obtained by the resonance 
overlap criteria of Chirikov [S]. When E 3 f, separatrices corresponding to each 
wave in (42) overlap, indicating that stochastic regions must be present in the phase 
space. Further, Schmidt [9] has shown that the ponderomotive potential well (see 
Fig. 5) destabilizes at E N 0.454. While we are not interested in numerically testing 
these estimates of the onset of stochasticity, our examples show that chaotic regkms 

do indeed exist locally for values of E much smaller than these estimates. 
We begin the comparison by integrating the Hamiltonian (43) inside the 

ponderomotive potential well, and display the results at the times t, = Znrn, 
m = 0, 1, 2, . ..) n; where n is the total number of plotted points. This procedure 
defines our Poincart: return map, Comparing Fig. 6 and Fig. 7, we notice that SPA4 
yields trajectories which lie on a well-defined submanifold while RKf4 seems eo 
exhibit chaos. Actually, the unstable behavior of RK14 in Fig. 7 is a result d its 
inability to accurately preserve the local constant of motion which defines the one- 
dimensional trajectory seen in Fig. 6. This numerical dissipation, which is also 
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H == p’,.$? ~ l cos(q)cosjt) 

FIG. 5. Phase space of (43) for E= 4. The large separatrices at 
resonance with the travelling waves in (42). The small, middle 
ponderomotive potential well. 

06 I 

top and bottom correspond to 
separatrix corresponds to the 

H = p2,/‘2 - Ecos(q)cosjt) 

t I”“!’ 

0.2 

\ 
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/ 
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I 
'. ./ 

"1 A' i 
. .._ ,.__-.,'. 

-0.2 

L---i 
0.5 0.6 07 

q(tj,“2n 

FIG. 6. PoincarC map of a single trajectory of (43) using SIAA The initial conditions are 
(q,,, pO, to) = (x, 0.188,0), E = 0.73/7t N 0.23, bt = 27c/25 z 0.25, with 30,000 plotted points. 
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U---L-, I 
03 0.4 05 06 

qjt)/27i 

Frc;. 7. Same as in Fig. 6, except using RKI4. 

0.3 0.4 05 

q(t)b 

0.6 07 

FIG. 8. Same as in Fig. 6, except using ISIA4. 
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TABLE V 

Execution Time (in Seconds) 
for Various Integration Methods 

&=0.5 61=0.1 6t= 0.01 

SIA4 22.3 1 2.25 21.59 
RK14 31.79 31.74 30.88 
ISIA4 42.64 32.77 26.69 

evident in Fig. 3, causes RK14 to be weakly attracted to the elliptic fixed point at 
(q, p) = (rc, 0). In addition, we have included in Fig. 8 the trajectories calculated 
using a fourth-order algorithm generated by the prescription in [2] (see 
Appendix 2), which we shall call ISIAA As in the case of SIA4, ISIA4 shows a 
stable, regular trajectory. 

An added consideration in the comparison of various methods is computational 
efficiency. Using the initial conditions (qo, pO, to) = (n, 0.5,0), and perturbation 
strength E = 1/47r 2 0.080, we integrated the system corresponding to the 
Hamiltonian (43) forward in time n = 10,000 time steps. The results, using three 
different values of the time step dt, are shown in Table V. The FORTRAN source 
code for ISIA4 solved the implicit equation for the integrated coordinate according 

H = p’y’2 ~- ECOS(qjCOS(t) 

FIG. 9. Poincark map of a single trajectory of (43 J using SIAA The initial conditions are 
(qo, pO, to) = (0,0.31255,00), E = l/271 z 0.16, 6t = 2x/30 2 0.21, with 30,000 plotted points. 



SYMPLECTIC INTEGRATION 247 

to a simple fixed-point iteraton scheme with numerical accuracy O(lQ-““j. Other 

than this crude method of solution, the computer code was carefully optimized. 
As can be seen, ISIA4 benefits from having a small time step. In the next section 
we wiI1 encounter a situation where the iteration scheme used in ISIA4 fails to 
converge. 

A further example of the stability of SIA4 can be seen in Fig. 9, where the 
Poincare map reveals the existence of a local constant of motion. In Fig. 10: 
however, we see that the equivalent trajectory calculated by RK14 experiences 
numerical dissipation which eventually overwhelms the calculation Interestingly3 
the difference between integrators is most easily noticed for regular trajectories of 
this sort. In the case when the motion is chaotic, the violation of topological 
invariants in phase space by Runge-Kutta methods is not so easily identihed. 
Figures 11 and 12, which show the development of a stochastic layer in the vicinity 
of the ponderomotive potential well separatrix, illustrate this difficulty. 

5.3. Linear Oscillator Perturbed by a Plane Waw 

The motion of a charged particle in a constant magnetic field (directed along the 
z-axis) perturbed by a plane electrostatic wave (propogating along the x-axis) is 
described by the equation 

j;- + 52’~ = E sin(kx - otl. 

H = p2/.3 - ecos(q’)cas(t) 

(44) 

FIG. 10. Same as in Fig. 9, except using RKIJ. 
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H = p’:,‘? - ecos(g)cos(tj 

0.3 

2 
- 0.0 C-G 

-0.2 

t sIII I #I,, 
0 02 0.4 0.6 06 1 

FIG.~~. Poincari map of a single trajectory of (43) using SIA4. The initial conditions are 
(q,,, p,,, to) = (z, 0.255,0), E = 0.73/71 v 0.23, 6t = 2n/30 2 0.21, with 25,000 plotted points. 

H = p2;d - ~cos(q)cos(tj 
I 

0.3 

0 02 0.4 0.6 0.6 1 

s(t)b 
FIG. 12. Same as in Fig. 11, except using RK14. 
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In this equation, Sz is the cyclotron frequncy and w is the temporal frequency of t 
electrostatic wave. In the case of exact resonance w = nO, Eq. (44) generates a 
stochastic web in phase space. Choosing units where Sz = k = 1 and calling 9 = I, 
p=.$ (44) is easily seen to be derivable from the Hamiltonian 

2 q2 H(q, p, t)=$-+I+~~~~(q-~tj, 
L L 

where we shall assume o is an integer, so that the resonance condition holds. This 
system has been studied by Chernikov et al. [lo]. A slightly more general 
Hamiltonian, 

H(q, p, I)=;+$+E i cosjq-o.lJ), (46: 
i= 1 

describes the situation when there exist s perturbing electrostatic waves, each with 
the same wavenumber and amplitude, but with differing temporal frequencies w:. 
This more general system has been examined numerically by Murakami et aE. [ 11 j. 

First, we integrated the system corresponding to (45) for relatively small values 
of the parameter E and w = 7. The PoincarC mappings were generated by plotting 
points at discrete times t, = 27cnz/7. Initial conditions were chosen with the particle 
on the separatrix net, with the results for SIA4 and RK14 shown in Figs. 1 

qi,t) 

FIG. 13. Separatrix mesh of (45) after averaging, for w = 7 and E < 1. The variables are defined by 
P = VJ4? and tan 0 = p,iq. 



250 CANDY AND ROZMUS 

20 

10 

2 

x 0 I 
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-20 
-20 

H = $/2 + q2/‘2 + EcOS(q-d) 

7 I I I / / 

I 

-I 

i 

0 

q(t) 

FIG. 14. Poincark map of a single trajectory of (45) using SIA4. The initial conditions are 
(qo, p,-,, to) = (0, 10.5939, 0), E = 0.8, o = 7, St = 2x/63 ‘v 0.1, with 35,000 plotted points. 

H = pe,/‘2 + q’,/J’2 + wos(q-otj 

-20 I I ’ I I ’ ’ I I I ’ I ’ 
-20 -10 0 10 20 

q(t) 

FIG. 15. Same as Fig. 14, except using RKI4. 
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respectively. These can be compared with the shape of the separatrix mesh 
(accurate to O(E)) in Fig. 13, which can be obtained through averaging or perturba- 
tion methods (cf. Ref. [ 111). This net is formed as a result of the intersection of 
resonant tori and can be shown to descrease in thickness rapidly with increasing 
particle velocity. Figure 14 shows the separatrix mesh traced by SIA4 to indee 
quote thin, even though the dynamics within the mesh is chaotic. Figure 15, on 
the other hand, shows RK14 slowly spiralling into stable fixed points. Of physical 
interest for the Hamiltonian (45) is to what extent the particle can absorb energy 
from the electrostatic wave and be accelerated to high velocities, Determination of 
the possibility of such particle diffusion requires very long-time, high accuracy 
integrations. Any tendency of the integrator to become attracted to or repelled from 
stable equilibrium points will eventually manifest itself in the production of 
completely unphysical behavior. In this sense, the global stability properties of the 
SIAs make them well suited to such numerical experiments. 

The lower order Runge-Kutta algorithm (RKL?) often tended to become wildly 
unstable even after a relatively small number of integration steps. To illustrate this 
tendency, we have included a comparison of SIA?, (Fig. 16) and RKI2 (Fig. 14 j, 
Much of the unstable behavior which we have noticed in the RKIs can be remedied 
by decreasing the size of 6t. However, this only increases the length of the time-scale 
of valid behavior and ultimately comes at the expense of increased corn~~tatio~a~ 
cost. 

10 I 

t 
CL 
1 O- 

t 

i 

20 - 
-20 

H = pe,,/2 + &2 + eccs(q-wt‘) 
I I r’T 

I 

qtt1 

FIG. 16. Poincark map of a single trajectory of (45) usin, m SIAZ. The initial conditions are 
(4”. p,,, lo) = (0, 4.5, 0), s = 1.2, o = 7, 6t = 2rc/210 v 0.03, with 20,000 plotted points. 
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FIG. 17. Same as Fig. 16, except using RKI2. 

H 0: J,(r)cos(W) + Jl,jr)00sj14ej + J,,(r)cos(21Bj 

q(t) 
FIG. 18. Separatrix mesh of (46) after averaging, for s= 3, w, = 7, o2 = 14, o3 = 21, and E < 1. The 

variables are defined by r = gw and tan 6 = p/q. 
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‘0 

r 
I 

i 

q!t) 

FIG. 19. Poincark map of a single trajectory of (46) using X44. The initial conditmns are 
(q,,, po, ro) = (0, 11.2075, 0), E = 1, s = 3, wL = 7, o2 = 14, oj = 21, 6: = 2~005 z 0.06. with 38,000 plo:;ed 
points. 

20 t 

-40 t 
-40 

FIG. 20. Same as Fig. 19, except using RKI4. 
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As a final example of the web equation, we solve numerically the system 
described by (46) with s = 3. The separatrix net of the averaged Hamiltonian is 
shown in Fig. 12, while the results obtained by SIA4 and RK14 are shown in 
Figs. 18 and 19, respectively. Once again, the structure of the intersection of 
resonant tori is defined more sharply by SIA4 than by RK14. An attempt to apply 
the implicit method of Channel1 and Scovel [2], in a manner similar to that of 
Section 3.2, resulted in divergence of the fixed-point iteration method used to solve 
for the integrated coordinate. However, in cases where this iteration did converge, 
the implicit method (ISIA4) showed the same stability properties as SIAA 

It has been mentioned by previous authors [2,4], that an SIA gives the exact 
evolution of a Hamiltonian system which is geometrically very similar to the 
true system. The degree of similarity is, of course, determined by the order and time 
step of the algorithm. Methods which are non-symplectic, however, replace 
the Hamiltonian system by one which is no longer Hamiltonian in nature. 
Consequently, after sufficiently long integration times, the numerical excitation 
or damping induced by such non-symplectic methods produces results which are 
completely uncharacteristic of the exact Hamiltonian system. 

6. SUMMARY AND CONCLUSIONS 

In this paper, we have generalized the method of Ruth [4] to obtain an SIA 
accurate to fourth order in the time step (SIA4). This algorithm has been tested 
using several numerical examples, including the nonlinear pendulum, the motion of 
a charged particle in a standing wave, and a harmonic oscillator perturbed by a 
plane wave. This testing has shown SIA4 to be computationally more efficient than 
both the classical Runge-Kutta method of order 4 (RK14) and the implicit method 
given in [2]. We have also found that SIA4 is inherently more stable than RK14 
during long-time integrations. 

APPENDIX 1 

The two Runge-Kutta methods which are used to numerically integrate the 
vector differential equation 

from the initial conditions x0 at time t = to the coordinates x at time t = t, + 6t are 
RK12, 

6t 
x=x,+f x,+yf(x,, to), t,+; 

( > 
6t, 
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and RKI4, 

x = i(k, + 2kz + 2k, + k4) 

k, = f(x,, to) 6r 

k, = f(x, + k,, t, + &) 6:. 

APPENDIX 2 

The EGA4 algorithm, shown below, for the Hamiltonian (43) is derixd 
according to the procedure in [Z]. It is accurate to fourth order in the time step. 
Were, (qO, pu) are the initial conditions at time t = t,, and (ql p) are the integrated 
variables at time t = t, + bt. Note that the first equation, 

a2 6t3 
q=qu+p06r-T(~sinqcost)+j(~p0cosqcost-~sinqsint) 

-4 

+ & [6tp, cos q sin t + 3&(pi + 1) sin q cos t - 5~’ sin q cos q cm2 tj? 

is implicit for q, while the second, 

6t2 
p=p,-&(&sinqcos t)+~(EpOcosqcos t-Esinqsin r) 

at3 
+ - [2&p, cos q sin t + E(& + 1) sin q cos t - 2~~ sin q cos q co? tj 

6 

6t4 
+ 24 [SE’~~ cos2 t(cos2 q - sin’ q) + 43~: + 1) sin q sin 1 

-~pO(p~+3)cosqcost-10~2sinqcosqsintcosr)] 

is explicit for p. 
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